SHORT COMMUNICATION

BIOGENETICALLY RELATED TRITERPENES FROM ELATERIOSPERMUM TAPOS BARK

Y. L. CHOW and H. H. QUON

Department of Chemistry, Simon Fraser University, Burnaby 2, British Columbia, Canada (Received 20 August 1969, in revised form 21 October 1969)

Abstract—The acetates and palmitates of β -amyrin and germanicol and the acetates of ψ -taraxasterol and lupeol were isolated from *Elateriospermum tapos* bark.

Elateriospermum tapos (Euphorbiaceae)* exudes copious amounts of light petroleum-soluble latex from the bark. Although evaporation of the solvent gave a crystalline solid, such a solid was a complex mixture, as shown by AgNO₁-impregnated silicic acid TLC analysis. The acetone-soluble part of the resin yielded acylated triterpene and triterpene alcohol fractions on chromatography. By repeated chromatography of the former fraction on an AgNO₃impregnated column, six compounds were isolated in pure state and were identified as β amvrin palmitate¹ (I), germanicol palmitate (III), \(\beta\)-amyrin acetate^{2,3} (II), germanicol acetate (IV), ψ -taraxasterol acetate (V) and lupeol acetate (VI); one of these, III, is a new compound. The triterpenes are arranged in the order of elution from the column and, therefore, represent the increasing order of binding strength with silver ion. These triterpenes were conveniently characterized by their i.r., NMR and mass spectroscopic data. The acetates II, V and VI were further unambiguously established by direct comparison with authentic samples.‡ Hydrolysis of I gave β -amyrin and palmitic acid. Respective hydrolysis of III and IV afforded germanicol. In addition, palmitic acid derived from I and III was ascertained, as the methyl ester, by direct comparisons with a mixture of methyl palmitate and stearate in a VPC column. It was noted that ψ -taraxasterol acetate⁵ (V) and lupenyl-I acetate⁵ exhibit indistinguishable i.r. and mass spectra⁶ and no mutual depression of the m.n.s. These two acetates, however, showed an unambiguous difference in the retention time on a SE 30 column. Incidentally, this is the first instance acetate V has been isolated from

- * We are indebted to Professor S. Kheng, Botany Department, University of Singapore for authentication of the species in field. The bark was obtained from McRitchie Reservoir, Singapore.
- ‡ The authors are grateful to Dr. S. K. Nigam, National Botanical Garden, Lucknow, India, for authentic samples of II and VI and to Professor T. G. Halsall of Dyson Perrins Laboratory, Oxford University, for the authentic samples of lupenyl-I acetate and ψ -taraxasterol acetate.
- ¹ Elsevier's Encyclopedia of Organic Chemistry, Vol. 14, p. 526 (1940); Vol. 14 Supplement, p. 939S. Elsevier, New York and Amsterdam.
- ² Y. C. Awasthi and C. R. Mitra, Phytochem. 7, 637 (1968).
- ³ H. ESTRADA, Bol. Inst. Quim. Univ. ncal. auto'n Mexico 8, 45 (1956),
- ⁴ M. Manzoor-I-Khuda, Tetrahedron 22, 2377 (1966).
- ⁵ T. R. AMES, J. L. BEATON, A. BOWERS, T. G. HALSALL and E. R. H. JONES, J. Chem. Soc. 1905 (1954) and the references cited therein.
- ⁶ H. Budzikiewicz, J. M. Wilson and C. Djerassi, J. Am. Chem. Soc. 85, 3688 (1963), J. Karliner and C. Djerassi, J. Org. Chem. 31, 1945 (1966).

natural source. The triterpene alcohol fraction was acetylated, wherefrom the presence of the acetate II, IV, V and VI were detected by TLC analysis.

Acid-catalysed rearrangements of lupeol to germanicol, ψ -taraxasterol and lupenyl-I and some interconversions among these triterpenes^{5,7,8} have been clearly established and discussed with the well-understood behaviours of carbonium ions by Jones, Halsall and coworkers.⁵ This further suggests the possible biogenetic relations among these triterpenes.⁹⁻¹¹ It is, therefore, significant that these triterpenes, with the exception of lupenol-I, are found in the same bark latex.

EXPERIMENTAL

Bark* of *Elateriospermum tapos* (4 kg) was chopped to small pieces and soaked with light petroleum overnight. The combined extracts were evaporated to afford resin (221 g). The resin was separated to the acetone-soluble (190 g) and powdery precipitate (37 g). The acetone-soluble residue (13 g) was chromatographed on a silicic acid column to yield a forerun (139 mg) and fraction A (4.74 g) and fraction B (1.14 g). On an AgNO₃-impregnated (10%) silicic acid plate, both fractions A and B showed six predominant spots. The fraction A was repeatedly chromatographed on an AgNO₃-impregnated (10%) column using light petroleum and benzene as eluents to give the following compounds.

Lupeol acetate. M.p. $214-216^{\circ}$ from EtOH (lit. 1 $215-216^{\circ}$); i.r. 1715, 1250, 1020 and 975 cm $^{-1}$; τ $8\cdot26$ (t, $J=0\cdot5$ Hz, 3H), $5\cdot50$ (d of d, 1H) and $5\cdot32$ (AB quartet, J=2 Hz, 2H); m/e (rel. %), 468 (100), 218 (45), 204 (38), 189 (63). A mixed m.p. with the authentic lupenyl acetate (m.p. $217-217\cdot5^{\circ}$) is $214-215^{\circ}$. Dihydrolupeol acetate: m.p. $246-248^{\circ}$ from hydrogenation (lit. 2 $245-246^{\circ}$); i.r. 1720, 1255 cm $^{-1}$; NMR τ $5\cdot60$ (d of d, $J=5\cdot5$ and 8 Hz, 1H); m/e (rel. %), 470 (8·7), 189 (100), 175 (43) and 163 (70). Lupeol: m.p. $210-211^{\circ}$ from hydrolysis (lit. 1 $210-211^{\circ}$); i.r. 3615 and 1060; NMR τ $6\cdot80$ (d of d, J=5 and 10 Hz, 1H) and $5\cdot38$ (AB quartet, $J=2\cdot5$ Hz, 2H).

Germanicol acetate. M.p. $281-282^{\circ}$ from EtOH (lit. 1 $283-284^{\circ}$); i.r. 1735, 1245 and 1030 cm⁻¹; NMR $\tau 5.60$ (d of d, J = 5 and 9 Hz, 1 H) and 5.20 (broad d, J = 1.5 Hz, 1 H); m/e (rel. %) 468 (25), 205 (45), 204 (100), 189 (77), 177 (78).

 ψ -Taraxasterol acetate. M.p. 243-244° from EtOH (lit. 240-241°); i.r. 1735, 1650, 1250 and 1040 cm⁻¹; NMR τ 5·56 (d of d, J = 6 and 9 Hz, 1H) and 4·77 (m, 1H); m/e (rel. %) 468 (9·9), and 189 (100). The retention time of ψ -taraxasterol acetate on a VPC column (3% SE 30 on Aeropak 30, 5 ft $\times \frac{1}{8}$ in., 230°) was 7 min 24 sec and that of lupenyl-I acetate was 8 min.

β-Amyrin acetate. M.p. 235–242° from EtOH (lit. 236°); i.r. 1735, 1245 and 1030 cm⁻¹; NMR τ 5.58 (d of d, J = 6 and 9 Hz, 1H) and 4.87 (d of d, J = 3 and 4 Hz, 1H); m/e (rel. %) 468 (14), 218 (100), 203 (39) and 189 (20). Mixed m.p. with authentic β-amyrin acetate‡ (m.p. 236–244°) is 234–244°.

 β -Amyrin palmitate. M.p. 76-77° from EtOH (lit. 177°); i.r. 1730 and 1250 cm⁻¹; NMR τ 5.60 (d of d, J = 6 and 9 Hz, 1H) and 4.88 (m, 1H); m/e (rel. %) 664 (0.27), 218 (100), 219 (19), 203 (24) and 189 (16). The compound was hydrolysed to β -amyrin, m.p. 195-196°, (lit. 199-200°) and methyl palmitate (esterification with CH₂N₂). A VPC comparison of this ester with methyl stearate (R_f 3 min) and methyl palmitate (R_f 1 min 44 sec) on 3 % SE 30 on Aeropak 30 (5 ft × $\frac{1}{8}$ in., 190°) showed that this ester is methyl palmitate.

Germanicol palmitate. M.p. $109-111^{\circ}$; i.r. 1730, 1250 and 980 cm⁻¹; NMR $\tau 5.60$ (d of d, J = 5 and 9 Hz, 1H) and 5.20 (broad, J = 1.5 Hz, 1H); (rel. %) 664 (0.38), 205 (100), 189 (48) and 177 (66).

Acknowledgements—The authors are grateful to the National Research Council of Canada for the financial assistance in the operational grant and the capital equipment grant (E1328), the latter of which was used in purchasing the mass spectrometer.

- ⁷ D. H. R. BARTON and T. BRUNN, J. Chem. Soc. 1683 (1952).
- ⁸ G. LARDELLI, H. K. KRUSI, O. JEGER and L. RUZICKA, Helv. Chim. Acta 31, 1815 (1948).
- ⁹ D. ARIGONI, Experientia 14, 153 (1958).
- ¹⁰ L. RUZICKA, Pure and Appl. Chem. 6, 493 (1963).
- ¹¹ T. G. HALSALL and R. T. APLIN, in *Fortschritte der chemie Organischer Naturstoffe* (edited by L. ZECH-MEISTER), Vol. 22, p. 153, Springer-Verlag, New York (1964).